Author:
Lüders Svenja,Fallet Claas,Franco-Lara Ezequiel
Abstract
Abstract
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference107 articles.
1. Bukau B: Regulation of the E. coli heat shock response. Molecular Microbiology 1993, 9: 671–680. 10.1111/j.1365-2958.1993.tb01727.x
2. Bukau B: Molecular Chaperones and Folding Catalysts-Regulation, Cellular Function and Mechanisms. Harwood Academic Publishers, Amsterdam; 1999:690.
3. Georgopoulos C, Liberek K, Zylicz M, Ang D: Properties of the Heat Shock Proteins of Escherichia coli and the Autoregulation of the Heat Shock Response. In The Biology of Heat Shock Proteins and Molecular Chaperones. Edited by: Morimoto RI, Tissiéres A, Georgopoulos C. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994:209–250.
4. Connolly L, Yura T, Gross CA: Autoregulation of the heat shock response in procaryotes. In Molecular Chaperones and Folding Catalysts Regulation, Cellular Function and Mechanism. Edited by: Bukau B. Harwood Academic Publishers, Amsterdam; 1999:13–33.
5. Han MJ, Park SJ, Park TJ, Lee SY: Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli . Biotechnology and Bioengineering 2004, 88: 426–436. 10.1002/bit.20227
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献