Author:
Li Miaomiao,Xu Jianhua,Qiu Zonghao,Zhang Juan,Ma Fengwang,Zhang Junke
Abstract
Abstract
Background
Apple, an invaluable fruit crop worldwide, is often prone to infection by pathogenic fungi. Identification of potentially resistance-conferring apple proteins is one of the most important aims for studying apple resistance mechanisms and promoting the development of disease-resistant apple strains. In order to find proteins which promote resistance to Marssonina coronaria, a deadly pathogen which has been related to premature apple maturation, proteomes from apple leaves inoculated with M. coronaria were characterized at 3 and 6 days post-inoculation by two dimensional electrophoresis (2-DE).
Results
Overall, 59 differentially accumulated protein spots between inoculation and non-inoculation were successfully identified and aligned as 35 different proteins or protein families which involved in photosynthesis, amino acid metabolism, transport, energy metabolism, carbohydrate metabolism, binding, antioxidant, defense and stress. Quantitative real-time PCR (qRT-PCR) was also used to examine the change of some defense and stress related genes abundance under inoculated conditions.
Conclusions
In a conclusion, different proteins in response to Marssonina coronaria were identified by proteomic analysis. Among of these proteins, there are some PR proteins, for example class III endo-chitinase, beta-1,3-glucanase and thaumatine-like protein, and some antioxidant related proteins including aldo/keto reductase AKR, ascorbate peroxidase and phi class glutathione S-transferase protein that were associated with disease resistance. The transcription levels of class III endo-chitinase (L13) and beta-1, 3-glucanase (L17) have a good relation with the abundance of the encoded protein’s accumulation, however, the mRNA abundance of thaumatine-like protein (L22) and ascorbate peroxidase (L28) are not correlated with their protein abundance of encoded protein. To elucidate the resistant mechanism, the data in the present study will promote us to investigate further the expression regulation of these target proteins.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference61 articles.
1. Newcomb RD, Crowhurst RN: Analyses of expressed sequence tags from apple. Plant Physiol 2006, 141: 147–166. 10.1104/pp.105.076208
2. Sharma JN, Sharma A, Sharma P: Out-break of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Hortic 2004, 662: 405–409.
3. Sangong DH, Kweon HJ, Song YY: Influence of defoliation by Marssonina blotch on vegetative growth and fruit quality in ‘Fuji’/M.9 apple tree, in Korean. J Hortic Sci & Tech 2011, 29: 531–538.
4. Yin L, Wang P, Li M: Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 2013, 54: 426–434.
5. Zhao H, Zhou TC, Cheng JJ: Control effect of triazole fungicides in controlling Marssonina coronari a in vitro and in field. Sci Sinica 2009, 45: 68–73.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献