Increases in soil and woody biomass carbon stocks as a result of rangeland riparian restoration

Author:

Matzek VirginiaORCID,Lewis David,O’Geen Anthony,Lennox Michael,Hogan Sean D.,Feirer Shane T.,Eviner Valerie,Tate Kenneth W.

Abstract

Abstract Background Globally, vegetation in riparian zones is frequently the target of restoration efforts because of its importance in reducing the input of eroded sediment and agricultural nutrient runoff to surface waters. Here we examine the potential of riparian zone restoration to enhance carbon sequestration. We measured soil and woody biomass carbon stocks, as well as soil carbon properties, in a long-term chronosequence of 42 streambank revegetation projects in northern California rangelands, varying in restoration age from 1 to 45 years old. Results Where revegetation was successful, we found that soil carbon measured to 50 cm depth increased at a rate of 0.87 Mg C ha−1 year−1 on the floodplain and 1.12 Mg C ha−1 year−1 on the upper bank landform. Restored sites also exhibited trends toward increased soil carbon permanence, including an increased C:N ratio and lower fulvic acid: humic acid ratio. Tree and shrub carbon in restored sites was modeled to achieve a 50-year maximum of 187.5 Mg C ha−1 in the channel, 279.3 Mg ha−1 in the floodplain, and 238.66 Mg ha−1 on the upper bank. After 20 years of restoration, the value of this carbon at current per-ton C prices would amount to $US 15,000 per km of restored stream. Conclusion We conclude that revegetating rangeland streambanks for erosion control has a substantial additional benefit of mitigating global climate change, and should be considered in carbon accounting and any associated financial compensation mechanisms.

Funder

Division of Agriculture and Natural Resources, University of California

11th Hour Foundation

Santa Clara University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3