Author:
Choi Sol-E,Hong Segi,Song Cholho,Kim Jiwon,Kim Whijin,Ha Ram,Lee Woo-Kyun
Abstract
Abstract
Background
Five ministries are involved in estimating the greenhouse gas (GHG) inventory in the South Korean land use, land-use change, and forestry (LULUCF) sectors. However, these ministries have not established a consistent land classification standard between land-use categories. Therefore, the GHG inventory is estimated at the approach 1 level with no spatial clarity between land-use categories. Moreover, the settlements category is not estimated because activity data and the spatial scope are lacking. This study proposed a methodology for constructing a land-use change (LUC) matrix in the LULUCF sector for improving approach level and estimating the GHG inventory in the settlements.
Result
We examined 10 sets of spatiotemporal data in South Korea to construct a LUC matrix. To maintain consistency in the spatial land classification, we constructed a LUC matrix using cadastral maps, which provide useful data for consistent land-use classification in South Korea. The LUC matrix was divided into remaining and land-converted settlements between 2005 and 2019 with estimated areas of 878,393.17 and 203,260.42 ha, respectively. CO2 emissions, according to Intergovernmental Panel Climate Change’s Guideline Tier 1, were estimated at 18.94 MtCO2 for 15 years, with an annual CO2 emission of 1.26 MtCO2 yr−1. CO2 emission by land conversion type was found to be the largest at 16.93 MtCO2 in the case of forest converted to settlements. In addition, the area with the largest CO2 emission density was Sejong-si at 7.59 tCO2/ha.
Conclusion
Based on reviewing available spatial data in South Korea, it is possible to improve Approach 3, which is more advanced than previous Approach 1 in the settlement category. In addition, the national GHG inventory also can be estimated by our constructed LUC matrix and activity data in this study. Under the many discussions about developing the Approach system, this study can provide in-detail information on developing LUC in South Korea in the settlement category as well as suggesting a methodology for constructing the LUC matrix for countries with similar problems to South Korea.
Funder
Ministry of land, Infrastructure and Transport, Republic of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change
Reference54 articles.
1. Sharma SK, Choudhury A, Sarkar P, Biswas S, Singh A, Dadhich PK, et al. Greenhouse gas inventory estimates for India. JSTOR. 2011;101:405–15.
2. UNFCCC. FCCC/CP/2015/10/Add.1: Paris Agreement. 2015.
3. Grassi G, Den Elzen MGJ, Hof AF, Pilli R, Federici S, Federici S, et al. The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges. Clim Change. 2012;115:873–81. http://unfccc.int/files/kyoto_protocol/application/pdf/newzealandlulucf150909.pdf.
4. Romppanen S. The LULUCF Regulation: the new role of land and forests in the EU climate and policy framework. J Energy Nat Resour Law. 2020;38:261–87.
5. Intergovernmental Panel on Climate Change (IPCC). Good practice guidance for land use, land use change and forestry. 2013.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献