Can a shift to regional and organic diets reduce greenhouse gas emissions from the food system? A case study from Qatar

Author:

Vicente-Vicente José LuisORCID,Piorr Annette

Abstract

Abstract Background Qatar is one of the countries with the highest carbon (C) footprints per capita in the world with an increasing population and food demand. Furthermore, the international blockade by some countries that is affecting Qatar—which has been traditionally a highly-dependent country on food imports—since 2017 has led the authorities to take the decision of increasing food self-sufficiency. In this study we have assessed the effect on greenhouse gas (GHG) emissions of shifting diets from conventional to organic products and from import-based diets to more regionalized diets for the first time in a Gulf country. Results We found that considering the production system, the majority of the emissions come from the animal products, but the differences between conventional and organic diets are very small (738 and 722 kg CO2-eq capita−1 year−1, of total emissions, respectively). Conversely, total emissions from plant-based products consumption might be around one order of magnitude smaller, but the differences in the emissions between the organic and conventional systems were higher than those estimated for animal products, leading to a decrease in 44 kg CO2-eq capita−1 year−1 when changing from 100% conventional to 50% of organic consumption of plant-based products. Regarding the shift to regionalized diets, we found that packaging has a small influence on the total amount of GHG emissions, whereas emissions from transportation would be reduced in around 450 kg CO2 capita−1 year−1 when reducing imports from 100 to 50%. Conclusions However, these results must be read carefully. Due to the extreme adverse pedoclimatic conditions of the country, commercial organic regional livestock would not be possible without emitting very high GHG emissions and just only some traditional livestock species may be farmed in a climate-friendly way. On the other hand, organic and regional low-CO2 emission systems of plant-based products would be possible by implementing innovations in irrigation or other innovations whose GHG emissions must be further studied in the future. Therefore, we conclude that shifting towards more plant-based organic regional consumption by using climate-friendly irrigation is a suitable solution to both increasing self-sufficiency and reducing C footprint. We encourage national authorities to including these outcomes into their environmental and food security policies.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

Reference115 articles.

1. FAO. Sustainable food systems. Concept and framework. Rome: FAO; 2018. p. 1–8.

2. SAPEA, Science Advice for Policy by European Academies. A sustainable food system for the European Union. Berlin; 2020.

3. Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapilla M, et al. Food security. In: Shukla PR, Skea J, Calvo-Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, editors., et al., Climate change and land: and IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Ginevra: IPCC; 2019. p. 1–200.

4. Irz X, Jensen JD, Leroy P, Réquillart V, Soler LG. Promoting climate-friendly diets: what should we tell consumers in Denmark, Finland and France? Environ Sci Policy. 2019;99:169–77.

5. Kevany K. Pamela mason and tim lang: sustainable diets: how ecological nutrition can transform consumption and the food system. Agric Human Values. 2018;35:743–4.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3