A life cycle and product type based estimator for quantifying the carbon stored in wood products

Author:

Wei XinyuanORCID,Zhao Jianheng,Hayes Daniel J.,Daigneault Adam,Zhu He

Abstract

Abstract Background Timber harvesting and industrial wood processing laterally transfer the carbon stored in forest sectors to wood products creating a wood products carbon pool. The carbon stored in wood products is allocated to end-use wood products (e.g., paper, furniture), landfill, and charcoal. Wood products can store substantial amounts of carbon and contribute to the mitigation of greenhouse effects. Therefore, accurate accounts for the size of wood products carbon pools for different regions are essential to estimating the land-atmosphere carbon exchange by using the bottom-up approach of carbon stock change. Results To quantify the carbon stored in wood products, we developed a state-of-the-art estimator (Wood Products Carbon Storage Estimator, WPsCS Estimator) that includes the wood products disposal, recycling, and waste wood decomposition processes. The wood products carbon pool in this estimator has three subpools: (1) end-use wood products, (2) landfill, and (3) charcoal carbon. In addition, it has a user-friendly interface, which can be used to easily parameterize and calibrate an estimation. To evaluate its performance, we applied this estimator to account for the carbon stored in wood products made from the timber harvested in Maine, USA, and the carbon storage of wood products consumed in the United States. Conclusion The WPsCS Estimator can efficiently and easily quantify the carbon stored in harvested wood products for a given region over a specific period, which was demonstrated with two illustrative examples. In addition, WPsCS Estimator has a user-friendly interface, and all parameters can be easily modified.

Funder

National Aeronautics and Space Administration

U.S. Department of Agriculture

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3