The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana

Author:

Daba Damena Edae,Soromessa Teshome

Abstract

Abstract Background Application of allometric equations for quantifying forests aboveground biomass is a crucial step related to efforts of climate change mitigation. Generalized allometric equations have been applied for estimating biomass and carbon storage of forests. However, adopting a generalized allometric equation to estimate the biomass of different forests generates uncertainty due to environmental variation. Therefore, formulating species-specific allometric equations is important to accurately quantify the biomass. Montane moist forest ecosystem comprises high forest type which is mainly found in the southwestern part of Ethiopia. Yayu Coffee Forest Biosphere Reserve is categorized into Afromontane Rainforest vegetation types in this ecosystem. This study was aimed to formulate species-specific allometric equations for Albizia grandibracteata Tuab. and Trichilia dregeana Sond. using the semi-destructive method. Results Allometric equations in form of power models were developed for each tree species by evaluating the statistical relationships of total aboveground biomass (TAGB) and dendrometric variables. TAGB was regressed against diameter at breast height (D), total height (H), and wood density (ρ) individually and in a combination. The allometric equations were selected based on model performance statistics. Equations with the higher coefficient of determination (adj.R2), lower residual standard error (RSE), and low Akaike information criterion (AIC) values were found best fitted. Relationships between TAGB and predictive variables were found statistically significant (p ≤ 0.001) for all selected equations. Higher bias was reported related to the application of pan-tropical or generalized allometric equations. Conclusions Formulating species-specific allometric equations is found important for accurate tree biomass estimation and quantifying the carbon stock. The developed biomass regression models can be applied as a species-specific equation to the montane moist forest ecosystem of southwestern Ethiopia.

Funder

Addis Ababa University thematic Fund

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3