Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps

Author:

Choi Hojung,Kim JoohoonORCID,Kim Wonjoong,Seong Junhwa,Park Chanwoong,Choi Minseok,Kim Nakhyun,Ha Jisung,Qiu Cheng-Wei,Rho JunsukORCID,Lee Heon

Abstract

AbstractNanoimprint lithography (NIL) has attracted attention recently as a promising fabrication method for dielectric metalenses owing to its low cost and high throughput, however, high aspect ratio (HAR) nanostructures are required to manipulate the full 2π phase of light. Conventional NIL using a hard-polydimethylsiloxane (h-PDMS) mold inevitably incurs shear stress on the nanostructures which is inversely proportional to the surface area parallel to the direction of detachment. Therefore, HAR structures are subjected to larger shear stresses, causing structural failure. Herein, we propose a novel wet etching NIL method with no detachment process to fabricate flawless HAR metalenses. The water-soluble replica mold is fabricated with polyvinyl alcohol (PVA) which is simpler than an h-PDMS mold, and the flexibility of the PVA mold is suitable for direct printing as its high tensile modulus allows high-resolution patterning of HAR metalenses. The diffraction-limited focusing of the printed metalenses demonstrates that it operates as an ideal lens in the visible regime. This method can potentially be used for manufacturing various nanophotonic devices that require HAR nanostructures at low cost and high throughput, facilitating commercialization.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Pohang University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electrical and Electronic Engineering,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3