MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices

Author:

Wu LeimingORCID,Yuan Xixi,Tang Yuxuan,Wageh S.,Al-Hartomy Omar A.,Al-Sehemi Abdullah G.,Yang Jun,Xiang Yuanjiang,Zhang Han,Qin Yuwen

Abstract

AbstractSensing devices are key nodes for information detection, processing, and conversion and are widely applied in different fields such as industrial production, environmental monitoring, and defense. However, increasing demand of these devices has complicated the application scenarios and diversified the detection targets thereby promoting the continuous development of sensing materials and detection methods. In recent years, Tin+1CnTx (n = 1, 2, 3) MXenes with outstanding optical, electrical, thermal, and mechanical properties have been developed as ideal candidates of sensing materials to apply in physical, chemical, and biological sensing fields. In this review, depending on optical and electrical sensing signals, we systematically summarize the application of Tin+1CnTx in nine categories of sensors such as strain, gas, and fluorescence sensors. The excellent sensing properties of Tin+1CnTx allow its further development in emerging intelligent and bionic devices, including smart flexible devices, bionic E-skin, neural network coding and learning, bionic soft robot, as well as intelligent artificial eardrum, which are all discussed briefly in this review. Finally, we present a positive outlook on the potential future challenges and perspectives of MXene-based sensors. MXenes have shown a vigorous development momentum in sensing applications and can drive the development of an increasing number of new technologies.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Guangdong Introducing Innovative and Enterpreneurial Teams of “The Pearl River Talent Recruitment Program”

Research and Development Plan in Key Areas of Guangdong Province

Guangdong Provincial Key Laboratory of Information Photonics Technology

Innovation Team Project of Department of Education of Guangdong Province

Science and Technology Innovation Leading Talents Program of Guangdong Province

King Khalid University through Research Center for Advanced Materials Science

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electrical and Electronic Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3