Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration

Author:

Zhang Dewei,Xu Chun-Ting,Chen Quan-Ming,Cao Han,Yu Hong-Guan,Tan Qing-Gui,Lu Yan-qing,Hu WeiORCID

Abstract

AbstractWavefront control is the fundamental requirement in optical informatics. Planar optics have drawn intensive attention due to the merits of compactness and light weight. However, it remains a challenge to freely manipulate the dispersion, hindering practical applications, especially in imaging. Here, we propose the concept of frequency-synthesized phase engineering to solve this problem. A phasefront-frequency matrix is properly designed to encode different spatial phases to separate frequencies, thus makes arbitrary dispersion tailoring and even frequency-separated functionalization possible. The periodically rotated director endows cholesteric liquid crystal with a spin and frequency selective reflection. Moreover, via presetting the local initial orientation of liquid crystal, geometric phase is encoded to the reflected light. We verify the proposed strategy by cascading the chiral anisotropic optical media of specifically designed helical pitches and initial director orientations. By this means, planar lenses with RGB achromatic, enhanced chromatic aberration and color routing properties are demonstrated. Inch-sized and high-efficient lenses are fabricated with low crosstalk among colors. It releases the freedom of dispersion control of planar optics, and even enables frequency decoupled phase modulations. This work brings new insights to functional planar optics and may upgrade the performance of existing optical apparatuses.

Funder

National Key Research and Development Program of China

Key Programme

State Administration for Science, Technology and Industry for National Defense

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3