Author:
Zhang Shoujun,Chen Xieyu,Liu Kuan,Li Haiyang,Xu Yuehong,Jiang Xiaohan,Xu Yihan,Wang Qingwei,Cao Tun,Tian Zhen
Abstract
AbstractMiniaturized nonvolatile reconfigurable optical components with a subwavelength thickness, extremely compact size, high-speed response, and low power consumption will be the core of next-generation all-optical integrated devices and photonic computing to replace traditional bulky optical devices and integrated circuits, which are reaching physical limitations of Moore’s law. Metasurfaces, as ultrathin planar surfaces, have played a major role in controlling the amplitude, phase, and polarization of electromagnetic waves and can be combined with various active modulation methods to realize a variety of functional devices. However, most existing reconfigurable devices are bounded in volatile nature with constant power to maintain and single functionality, which restricts their further extensive applications. Chalcogenide phase change materials (PCM) have attracted considerable attention due to their unique optical properties in the visible and infrared domains, whereas in the terahertz (THz) regime, research on the reversible phase transition in large-scale areas and applications of Ge2Sb2Te5 (GST) are still under exploration. Here, we achieved reversible, repeated, and large-area switching of GST with the help of optical and thermal stimuli. Large-area amorphization with a 1 cm diameter of GST is realized by using a single laser pulse. Then, we incorporate GST into metasurface designs to realize nonvolatile, reconfigurable, multilevel, and broadband terahertz modulators, including the anomalous deflector, metalens, and focusing optical vortex (FOV) generator. Experimental results verify the feasibility of multilevel modulation of THz waves in a broadband frequency range. Moreover, the modulators are reusable and nonvolatile. The proposed approach presents novel avenues of nonvolatile and reconfigurable metasurface designs and can enable wide potential applications in imaging, sensing, and high-speed communications.
Funder
the National Key Research and Development Program of China
Tianjin Municipal Fund for Distinguished Young Scholars
Key Fund of Shenzhen Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献