Abstract
Abstract
This article interprets emerging scholarship on rental housing platforms—particularly the most well-known and used short- and long-term rental housing platforms—and considers how the technological processes connecting both short-term and long-term rentals to the platform economy are transforming cities. It discusses potential policy approaches to more equitably distribute benefits and mitigate harms. We argue that information technology is not value-neutral. While rental housing platforms may empower data analysts and certain market participants, the same cannot be said for all users or society at large. First, user-generated online data frequently reproduce the systematic biases found in traditional sources of housing information. Evidence is growing that the information broadcasting potential of rental housing platforms may increase rather than mitigate sociospatial inequality. Second, technology platforms curate and shape information according to their creators’ own financial and political interests. The question of which data—and people—are hidden or marginalized on these platforms is just as important as the question of which data are available. Finally, important differences in benefits and drawbacks exist between short-term and long-term rental housing platforms, but are underexplored in the literature: this article unpacks these differences and proposes policy recommendations.
Policy and practice recommendations
As rental housing technologies upend traditional market processes in favor of platform oligopolies, policymakers must reorient these processes toward the public good.
Long-term and short-term rental platforms offer different market benefits and drawbacks, but the latter in particular requires proactive regulation to mitigate harm.
At a minimum, policymakers must require that short-term rental platforms provide the information necessary for cities to enforce current, let alone new, housing regulations.
Practitioners should be cautious inferring market conditions from rental housing platform data, due to difficult-to-measure sampling biases.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献