Understanding how city networks are leveraging climate action: experimentation through C40

Author:

Nguyen Thi Minh PhuongORCID,Davidson Kathryn,Coenen Lars

Abstract

AbstractClimate change is one of the most challenging environmental and social problems for contemporary urban planning. In response to this phenomenon, city networks have emerged as new configurations of urban climate governance that encourage the implementation of experiments such as testing new solutions regarding sustainable transport. While city networks are gaining momentum and influence as effective platforms to transform and scale up pilot experiments into city-wide schemes, little is known regarding their role in conditioning and leveraging such urban experiments Our paper investigates the underexplored nature of urban experiments within city networks and provides a better understanding of how these networks condition urban experiments. To this end an analytical model has been developed and applied to the case of the C40 Climate Leadership Group (C40) and its Climate Positive Development Good Practice Guide. Our findings suggest that the C40 encourages variation in local climate experiments and the generation of new and innovative climate solutions in member cities. In particular they reveal that the implementation of climate positive experiments has passed the ‘variation’ stage, is currently in the ‘selection’ stage, and likely to move towards the ‘retention’ stage in the near future. Potential experimentation outputs of the case are identified as built environment change, new citizen practices, policy change, infrastructural change and new technology. Noticeably, we consider that the C40 plays an important role in providing fundamental institutional support to implement and leverage climate projects within its member cities.

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3