The eco-city and its core environmental dimension of sustainability: green energy technologies and their integration with data-driven smart solutions

Author:

Bibri Simon Elias

Abstract

AbstractEcological urbanism is seen today as one of the keys towards unlocking the quest for a low-carbon or fossil fuel–free society. Global and local policies promote and advocate the eco–city as the most environmentally sound model of sustainable urbanism. It is argued that the eco–city strategies and solutions are expected to deliver positive outcomes in terms of minimal demand on energy resources and thus minimal environmental impacts. Moreover, it has recently been suggested that the eco-city needs to embrace and leverage what advanced ICT has to offer, particularly with regard to sustainable energy systems, so as to improve and advance its contribution to the goals of environmental sustainability. This paper examines how the eco–city especially its core environmental dimension is practiced and justified in urban planning and development with respect to sustainable energy systems and their integration with data-driven smart technologies at the district level. To illuminate this urban phenomenon accordingly, a descriptive case study is adopted as a qualitative research methodology where the empirical basis is formed by urban planning and development documents combined with secondary data and scientific literature. To provide a theoretical foundation and produce a rationale for this study, this paper first provides a state–of–the–art review of the field of ecological urbanism in terms of its foundations, models, strategies, research issues, as well as data–driven smart technological trends. This study shows that the Eco-city District of Stockholm Royal Seaport uses green energy and data-driven smart technologies as the key strategies and solutions for achieving the environmental objectives of sustainable development in terms of lowering energy consumption and mitigating pollution. This entails conserving and decreasing the demand for energy through renewable resources (i.e., sun, wind, and water), bio–fuelled Combined Heat Power system, large-scale smart grid system, energy management, sustainable waste management, and passive solar houses. This research enhances the scholarly community’s current understanding of the emerging phenomenon of the smart eco-city with respect to the synergic potential of the integration of its sustainable energy strategies with data-driven technology solutions for advancing environmental sustainability.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Reference115 articles.

1. Ahmed E, Yaqoob I, Hashem IAT, Khan I, Ahmed AIA, Imran M, Vasilakos AV (2017) The role of big data analytics in internet of things. J Comp Net 129:459–471

2. Akande A, Gomes P, Cabral P (2019) The Lisbon Ranking for Smart Sustainable Cities in Europe. Sustain Cities Soc 44:475–487.

3. Al Nuaimi E, Al Neyadi H, Nader M, Al-Jaroodi J (2015) Applications of big data to smart cities. J Internet Serv Appl 6(25):1–15

4. Angelidou M, Artemis P, Nicos K, Christina K, Tsarchopoulos P, Anastasia P (2017) Enhancing sustainable urban development through smart city applications. J Sci Technol Policy Manag:1–25

5. Anthony B, Petersen SA, Ahlers D et al (2019) Big data-oriented energy prosumption service in smart community districts: a multi-case study perspective. Energy Inform 2:36. https://doi.org/10.1186/s42162-019-0101-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3