Artificial ecosystem optimized neural network controlled unified power quality conditioner for microgrid application

Author:

Ratnakaran Rajeev,Rajagopalan Gomathi Bhavani,Fathima Asma

Abstract

AbstractUnified power quality conditioner is chiefly employed to offer power quality improvement, especially in grid connected mode of operation in microgrid applications. This article proposes an artificial ecosystem optimized neural network for control of photovoltaic system and battery powered UPQC for microgrid applications. The intelligent routine implemented by the proposed controller helps tune parameters such as the error between load voltage references and measured load voltage signals so that the optimal performance of the system can be reached as its exploratory and exploitation capabilities are leveraged in controller design. A prototype of a three-phase system with a dually powered conditioner is tested and validated in MATLAB-Simulink environment in a variety of dynamic scenarios that are commonly present in a contemporary distribution network, such as grid voltage changes, grid inaccessibility, variation in photovoltaic power output, and nonlinear load. It is shown that the proposed controller, being aware of the instantaneous values of grid voltages, was able to adequately compensate in magnitude and phase under all dynamic scenarios to maintain the load voltage constant at the nominal value and sinusoidal. When the system switches automatically from grid-connected mode to islanded mode due to a grid fault, it was observed that the controller prioritizes delivering uninterrupted power to critical loads and enables fast discharge from the battery. The total harmonic distortion percentages of grid currents and load voltages are found to be within the limits as per IEEE-519 standards.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3