SGLSim: tool for smart glazing energy performance analysis

Author:

Raihan Md Anam,Chattopadhyay Kuntal,Bhatia Aviruch,Garg Vishal,Hussain Aftab M.

Abstract

AbstractA tool Smart Glazing Simulator (SGLSim), has been developed to perform parametric simulation analysis of different window systems with several window-to-wall ratios and orientations to compute and compare the annual energy performance. The net annual energy performance of the building is based on the electricity consumption in heating, cooling, interior lighting, and appliances, along with the electricity generation by the photovoltaic (PV) glazing, which is used to evaluate the energy performance of smart glazing. Performing parametric energy simulations and calculating the net annual electricity consumption of different combinations requires building modeling and energy simulation expertise. A web-based parametric tool can assist the user in carrying out the desired studies without requiring extensive technical knowledge. A case study is prepared for India’s warm and humid climatic zone. This study examines the benefits of double pane semi-transparent photovoltaics (STPV) glazing, STPV glazing with dynamic internal blind, and electrochromic (EC) glazing over other traditional glazing systems. The study shows that the optimal net annual electricity consumption in the case of STPV windows is 10–12% less than the optimal value obtained in a simple glazing case. Additionally, the result suggested that glare-controlled interior blinds in the STPV window further reduce the net annual electricity consumption by up to 15% compared to conventional glazing. Similarly, installing the EC glazing reduces the yearly electricity consumption by up to 5% compared to standard glazing.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Reference23 articles.

1. Bülow-hübe H (2001) Energy-efficient window systems: effects on energy use and daylight in buildings. Lund University, Lund, p 248

2. Cheng Y, Gao M, Dong J, Jia J, Zhao X, Li G (2018) Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Appl Energy 232:517–526

3. Corsi M, Zmeureanu R, Fazio P (2000) Modeling of electrochromic glazing switching control strategies in Micro-DOE2.1E, Centre for Building Studies, Concordia University

4. Crawley DB, Ellis PG, Torcellini PA (2007) Simulation of energy management systems in EnergyPlus. Build Simul

5. Dutta R (2018) Modeling an electrochromic window using a multi-criteria control strategy. In: Proceedings of the building performance analysis conference and simbuild co-organized by ASHRAE and IBPSA-USA. Chicago, IL, USA, pp 149–156

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3