Author:
Abdel-Khalek Hazem,Schäfer Mirko,Vásquez Raquel,Unnewehr Jan Frederick,Weidlich Anke
Abstract
Abstract
Flow-based Market Coupling (FBMC) provides welfare gains from cross-border electricity trading by efficiently providing coupling capacity between bidding zones. In the coupled markets of Central Western Europe, common regulations define the FBMC methods, but transmission system operators keep some degrees of freedom in parts of the capacity calculation. Besides, many influencing factors define the flow-based capacity domain, making it difficult to fundamentally model the capacity calculation and to derive reliable forecasts from it. In light of this challenge, the given contribution reports findings from the attempt to model the capacity domain in FBMC by applying Artificial Neural Networks (ANN). As target values, the Maximum Bilateral Exchanges (MAXBEX) have been chosen. Only publicly available data has been used as inputs to make the approach reproducible for any market participant. It is observed that the forecast derived from the ANN yields similar results to a simple carry-forward method for a one-hour forecast, whereas for a longer-term forecast, up to twelve hours ahead, the network outperforms this trivial approach. Nevertheless, the overall low accuracy of the prediction strongly suggests that a more detailed understanding of the structure and evolution of the flow-based capacity domain and its relation to the underlying market and infrastructure characteristics is needed to allow market participants to derive robust forecasts of FMBC parameters.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Belgian Federal Commission for Electricity and Gas Regulation (2017) Functioning and design of the Central West European day-ahead flow based market coupling for electricity: Impact of TSOs Discretionary Actions. CREG.
https://www.creg.be/sites/default/files/assets/Publications/Studies/F1687EN.pdf
.
2. Bjørndal, E, Bjørndal M, Cai H (2018) Flow-Based Market Coupling in the European Electricity Market – A Comparison of Efficiency and Feasibility. Norwegian School of Economics, Department of Business and Management Science.
https://ideas.repec.org/p/hhs/nhhfms/2018_014.html
. Discussion Papers.
3. Bjorndal, E, Bjorndal MH, Cai H (2018) The Flow-Based Market Coupling Model and the Bidding Zone Configuration. SSRN Electron J.
https://www.ssrn.com/abstract=3272190
.
4. Brockwell, PJ, Davis RA (2016) Introduction to Time Series and Forecasting. 3rd edn. Springer, Berlin.
5. Boury, J (2015) Methods for the determination of flow-based capacity parameters: description, evaluation and improvements. Master’s thesis, KU Leuven.