Author:
Toniato Enrico,Mehta Prakhar,Marinkovic Stevan,Tiefenbeck Verena
Abstract
AbstractThe transport sector is responsible for 25% of global CO2 emissions. To reduce emissions in the EU, a shift from the currently 745,000 operating public buses to electric buses (EBs) is expected in the coming years. Large-scale deployments of EBs and the electrification of bus depots will have a considerable impact on the local electric grid, potentially creating network congestion problems and spikes in the local energy load. In this work, we implement an exact, offline, modular multi-variable mixed-integer linear optimization algorithm to minimize the daily power load profile peak and optimally plan an electric bus depot. The algorithm accepts a bus depot schedule as input, and depending on the user input on optimization conditions, accounts for varying time granularity, preemption of the charging phase, vehicle-to-grid (V2G) charging capabilities and varying fleet size. The primary objective of this work is the analysis of the impact of each of these input conditions on the resulting minimized peak load. The results show that our optimization algorithm can reduce peak load by 83% on average. Time granularity and V2G have the greatest impact on peak reduction, whereas preemption and fleet splitting have the greatest impact on the computational time but an insignificant impact on peak reduction. The results bear relevance for mobility planners to account for innovative fleet management options. Depot infrastructure costs can be minimized by optimally sizing the infrastructure needs, by relying on split-fleet management or V2G options.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems
Reference38 articles.
1. 2050 long-term strategy — Climate Action. https://ec.europa.eu/clima/policies/strategies/2050_en. Accessed 04 May 2021.
2. ABB (2020) Hitachi ABB Power Grids. https://www.hitachiabb-powergrids.com/ch/en. Accessed 04 May 2021.
3. Arango Castellanos, JD, Dhanasekaran Velayutha Rajan H, Rohde A-K, Denhof D, Freitag M (2019) Design and simulation of a control algorithm for peak-load shaving using vehicle to grid technology. SN Appl Sci 1(9):1–12.
4. Buses — ACEA - European Automobile Manufacturers’ Association. https://www.acea.be/automobile-industry/buses. Accessed 04 May 2021.
5. Clairand, J-M, Gonzalez M, Guerra-Terán P, Cedeño I, Escrivá G (2020) The impact of charging electric buses on the power grid, 1–5.. IEEE Power & Energy Society General Meeting (PESGM).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献