Short-term forecasting of German generation-based CO2 emission factors using parametric and non-parametric time series models

Author:

Ostermann Adrian,Bajrami Arian,Bogensperger Alexander

Abstract

AbstractThis study focuses on forecasting German generation-based CO2 emission factors to develop accurate prediction models, which help to shift flexible loads in time with low emissions. While most existing research relies on point forecasts to predict CO2 emission factors, the presented methods are utilized to perform interval forecasts. In addition, compared to other studies, recent data that extends over a long period is used. The study describes the used data and discusses the concept of walk-forward validation. Further, various models are employed and tuned to forecast the emission factors, including benchmark, parametric (e.g., SARIMAX), and non-parametric (bagging, random forest, gradient boosting, CNN, LSTM, MLP) models. The study reveals that all applied parametric and non-parametric models yield better results than the benchmark models, while the gradient boosting model has the lowest mean absolute error with 40.66 gCO2/kWh, the lowest mean absolute percentage error 8.17%, and the random forest has the lowest root mean square error with 57.61 gCO2/kWh. However, the potential of the deep learning models was not fully exploited. In a live application, the implementation effort should be evaluated against the benefit of better prediction.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Long Short-Term Memory for Gold Prices Forecasting;Malaysian Journal of Mathematical Sciences;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3