A new optimal allocation of DGs in distribution networks by using coot bird optimization method

Author:

Memarzadeh Gholamreza,Arabzadeh Mohammadreza,Keynia Farshid

Abstract

AbstractEnergy is one of the most important topics in the world today and is considered as one of the most effective factors for the development of countries. Due to the limitation of non-renewable energy sources and undesirable effects of consuming these resources on the environment, the strategy of countries has changed towards the use of renewable energy. Renewable energy sources do not decrease over time and operate independently of price fluctuations and are more available, thus being able to play a greater role in modern power systems. Therefore, the optimal location and use of these resources will have an impact on modifying the parameters of the power grid. In this paper an analytical approach for optimal placement and sizing of distributed generation (DG) in power distribution networks to minimize the power loss, bus voltage limits, DG capacity limits, current limits, and DG penetration limit. In the first step, determines the DG capacity causing maximum benefit at different buses, and then selects the best location for DG placement which corresponds to highest benefit in the buses. This method is applicable for sizing and siting of single as well as multiple DG units. The coot bird optimization method (CBOM) is proposed for solving optimal placement, size, and power factor (PF) of DG in distribution network. The suggested method is tested on the IEEE 33-bus, 69-bus, Distribution Networks. The proposed CBOM method has good performance to find optimal placement, size, and PF of DG and it can be applied for various distribution system.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3