Topological considerations on peer-to-peer energy exchange and distributed energy generation in the smart grid

Author:

Sha AngORCID,Aiello Marco

Abstract

AbstractThe vision of the future Smart Grid considers end-users connected to it as both consuming and generating energy. Equipped with small-scale renewable energy generators and storage systems, end-users, also known as prosumers, engage in a local energy market for procuring and selling energy, in turn disrupting the traditional utility model. The appeal of this vision lies in the engagement of end-users, in facilitating the introduction and optimization of renewable energy sources, with the overall expectation of optimizing the global energy generation and distribution process. To handle the peer-to-peer energy exchange and distributed energy generation in the digitalized Smart Grid, we proposed an optimization strategy. In the present work, we propose a Monte Carlo based simulation model to investigate the role of the topology in facilitating the peer-to-peer energy exchanges and distributed energy generation. We consider a 37-node distribution network and evaluate four topological models: radial, complete graph, random graph, and small-world. The results indicate that the random graph model is better than other models in reducing the average delivery path length and energy losses in the energy transfer between providers and consumers. The small-world model has higher efficiency than other models in reducing the maximum power load in the distribution network and the cost of buying energy for end-users. We scale up the investigation by considering a 100-node network and evaluate the random graph and the small-world models by varying the rewiring probabilities. The results show that the small-world model outperforms the random graph model on most efficiency metrics, even when considering infrastructural costs. This work provides the foundation for a decision support system for analysis and high level planning of the distribution network.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain Based Solar Energy Trading;2021 9th International Renewable and Sustainable Energy Conference (IRSEC);2021-11-23

2. A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation;Sustainability;2021-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3