Integrated model construction for state of charge estimation in electric vehicle lithium batteries

Author:

Liu Yuanyuan,Dun Wenxin

Abstract

AbstractThis research addresses the issue of State of Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using a Genetic algorithm to adjust the neural network weights. Additionally, a strategy involving support vector machines for model optimization is proposed. This strategy involves preprocessing the data, selecting appropriate kernel functions for training, and merging prediction results to enhance the stability of the model. Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model achieved the minimum prediction error percentage of only 0.1529% when the correction coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest error percentage, average absolute error, mean square error, and root mean square error when handling small, medium, and large datasets. For instance, in the small dataset, the error percentage was only 0.1518, and the root mean square error was only 0.0604. The research findings demonstrated that the proposed model exhibited high real-time accuracy in predicting battery SOC, enabling real-time monitoring of battery operating parameters. The method proposed in this study can accurately predict the state of battery charge, extend the life of battery packs, and improve the performance of electric vehicles. It has important significance for promoting the development of the electric vehicle industry.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3