An agent-based modelling framework for the simulation of large-scale consumer participation in electricity market ecosystems

Author:

Fatras Nicolas,Ma Zheng,Jørgensen Bo Nørregaard

Abstract

AbstractThe role of consumers as price-sensitive participants in electricity markets is considered essential to ensure efficient and secure operations of electricity systems. Yet the uncertain or unknown consequences of active market participation remain a large barrier for active consumer-side market participation. Simulations are a powerful tool to reduce this uncertainty by giving consumers an insight on the potential benefits and costs of market participation. However, the simulation setup must be adapted to each market context and each consumer market participation strategy. To simplify the simulation development process and improve the comparability of simulation results, this paper proposes a modular yet systematic electricity market modelling framework. The framework applies object-oriented programming concepts for business ecosystem modelling presented in previous works to develop an agent-based model of a consumer-centric electricity market ecosystem. The market ecosystem is represented by a multitude of interacting submarkets with their own logic. Within submarkets, context-independent and context-dependent elements are distinguished to provide model abstraction which can be adapted to different contexts. This framework is illustrated by applying it to three different submarkets in the Western Danish electricity market context: the Nordpool day-ahead market, the Nordpool intraday market, and the Frequency Containment Reserve market. The submarket role abstractions allow to benefit from the commonalities between the analysed submarkets during model implementation, while the role parametrisations allow to quickly adapt the roles to each market context. The implementation of the modelling framework in the Nordic context highlights the benefits of a modular approach in a liberalised and unbundled market context.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3