Reinforcement learning in local energy markets

Author:

Bose SamratORCID,Kremers Enrique,Mengelkamp Esther Marie,Eberbach Jan,Weinhardt Christof

Abstract

AbstractLocal energy markets (LEMs) are well suited to address the challenges of the European energy transition movement. They incite investments in renewable energy sources (RES), can improve the integration of RES into the energy system, and empower local communities. However, as electricity is a low involvement good, residential households have neither the expertise nor do they want to put in the time and effort to trade themselves on their own on short-term LEMs. Thus, machine learning algorithms are proposed to take over the bidding for households under realistic market information. We simulate a LEM on a 15 min merit-order market mechanism and deploy reinforcement learning as strategic learning for the agents. In a multi-agent simulation of 100 households including PV, micro-cogeneration, and demand shifting appliances, we show how participants in a LEM can achieve a self-sufficiency of up to 30% with trading and 41,4% with trading and demand response (DR) through an installation of only 5kWp PV panels in 45% of the households under affordable energy prices. A sensitivity analysis shows how the results differ according to the share of renewable generation and degree of demand flexibility.

Funder

European Institute for Energy Research

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Albadi, MH, El-Saadany EF (2008) A summary of demand response in electricity markets. Electr Power Syst Res 78(11):1989–1996.

2. Bishop, CM (2006) Pattern recognition and machine learning. Springer, New York.

3. Caramizaru, A, Uihlein A (2020) Energy Communities: An Overview of Energy and Social Innovation. Publ Off Eur Union Luxemb EUR 30083 EN:7–11.

4. Chen, T, Alsafasfeh Q, Pourbabak H, Su W (2018) The next-generation us retail electricity market with customers and prosumers A bibliographical survey. Energies 11(1):8.

5. Chen, T, Bu S (2019) Realistic Peer-to-Peer Energy Trading Model for Microgrids using Deep Reinforcement Learning In: 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 1–5.. IEEE, Chengdu.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3