Comparison of short-term electrical load forecasting methods for different building types

Author:

Groß Arne,Lenders Antonia,Schwenker Friedhelm,Braun Daniel A.,Fischer David

Abstract

AbstractThe transformation of the energy system towards volatile renewable generation, increases the need to manage decentralized flexibilities more efficiently. For this, precise forecasting of uncontrollable electrical load is key. Although there is an abundance of studies presenting innovative individual methods for load forecasting, comprehensive comparisons of popular methods are hard to come across.In this paper, eight methods for day-ahead forecasts of supermarket, school and residential electrical load on the level of individual buildings are compared. The compared algorithms came from machine learning and statistics and a median ensemble combining the individual forecasts was used.In our examination, nearly all the studied methods improved forecasting accuracy compared to the naïve seasonal benchmark approach. The forecast error could be reduced by up to 35% compared to the benchmark. From the individual methods, the neural networks achieved the best results for the school and supermarket buildings, whereas the k-nearest-neighbor regression had the lowest forecasting error for households. The median ensemble narrowly yielded a lower forecast error than all individual methods for the residential and school category and was only outperformed by a neural network for the supermarket data. However, this slight increase in performance came at the cost of a significantly increased computation time. Overall, identifying a single best method remains a challenge specific to the forecasting task.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Ahmed, NK, Atiya AF, Gayar NE, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29(5-6):594–621.

2. Amasyali, K, El-Gohary NM (2018) A review of data-driven building energy consumption prediction studies. Renew Sust Energ Rev 81:1192–1205.

3. Bishop, CM (2006) Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin.

4. Bundesministerium für Wirtschaft und Energie, BMWI (2017) Das Erneuerbare-Energien-Gesetz. https://www.erneuerbare-energien.de/EE/Redaktion/DE/Dossier/eeg.html. Accessed: 19 Feb 2020.

5. Chandrashekar, G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chance Constrained Day Ahead Stochastic Unit Commitment with Multiple Uncertainties;Journal of Electrical Engineering & Technology;2024-08-02

2. Development and Selection of Load Forecasting Techniques for Non-Residential Buildings;2024 18th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS);2024-06-24

3. Load Forecasting Using Random Forest Regression Algorithm in Machine Learning;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26

4. Short-Term Load Forecasting Based on Optimized Random Forest and Optimal Feature Selection;Energies;2024-04-18

5. An ensemble-based approach for short-term load forecasting for buildings with high proportion of renewable energy sources;Energy and Buildings;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3