Performance and harmonic detection algorithm of phase locked Loop for parallel APF

Author:

Wang Dan,Yang Linsen,Ni Lei

Abstract

AbstractAs the boost of power electronics technology, the harmonic problem in the power system is becoming increasingly prominent. Fourier decomposition is performed on the load current in the power system, and components with a frequency that is an integer multiple of the fundamental wave are referred to as harmonic components. Harmonic control is essential to establish a safe and reliable power grid environment and provide high-quality and clean electricity to power users. The study focused on parallel active power filters, proposed a specific harmonic detection method on the grounds of synchronous harmonic rotating coordinate system, and developed a phase-locked loop design on the grounds of order generalized integrator. Meanwhile, a compensation current control method on the grounds of space vector pulse width modulation was introduced. The results showed that in the full compensation simulation experiment, the compensated A-phase grid side current waveform was significantly improved and presented a sinusoidal shape. After 0.05 s, the actual output compensation current closely followed the command current. Meanwhile, after compensation, the total harmonic distortion rate decreased from 26.58 to 3.06%. In specific harmonic compensation simulation experiments, when the sum of 5th, 7th, and 11th harmonic components was used as the command current for compensation, the distortion of the current waveform was improved after the load undergoes a sudden change. After compensation, the 5th, 7th, and 11th harmonic content significantly decreased, and the total harmonic distortion rate decreased to 4.08%. This indicated that the proposed phase-locked loop design and harmonic detection method for active power filters had high stability and effectiveness. The study’s primary contribution is to enhance the utilization efficiency of DC voltage and improve the dynamic response ability of current. Additionally, it offers a new method for reducing the impact of harmonics on the power grid and improving power quality. It provided an effective method reference for technological progress in related fields such as power electronics and control engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3