Federated learning for 5G-enabled infrastructure inspection with UAVs

Author:

Lekidis Alexios

Abstract

AbstractElectricity infrastructures include assets that require frequent maintenance, as they are exposed into heavy use, in order to produce energy that satisfies customer demands. Such maintenance is currently performed by specialized personnel that is scaffolding to spot damages or malfunctioning equipment. Scaffolding is time-consuming and incurs accident risks. To tackle this challenges, grid operators are gradually using Unmanned Aerial Vehicles (UAVs). UAV trajectories are observed by a centralized operation center engineers for identifying electrical assets. Moreover, asset identification can be further automated through the use of Artificial Intelligence (AI) models. However, centralized training of AI models with UAV images may cause inspection delays when the network is overloaded and requires Cloud environments with enough processing power for model training on the operation center. This imposes privacy concerns as sensitive data is stored and processed externally from the infrastructure facility. This article proposes a federated learning method for UAV-based inspection that leverages a Multi-access Edge Computing platform installed in edge nodes to train UAV data and improve the overall inspection autonomy. The method is applied for the inspection of the Public Power Corporation’s Innovation Hub. Experiments are performed with the proposed method as well as with a centralized AI inspection method and demonstrate the federated learning benefits in reliability, AI model processing time and privacy conservation.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Reference18 articles.

1. 3rd Generation Partnership Project: Technical Specification Group Services and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Release 15) (2019)

2. 3rd Generation Partnership Project: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement for Unmanned Aerial Vehicles; Stage 1 (2019)

3. AbdulRahman S, Tout H, Ould-Slimane H, Mourad A, Talhi C, Guizani M (2020) A survey on federated learning: the journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J 8(7):5476–5497

4. Chowdhary K (2020) Natural language processing. Fund Artif Intell 603–649

5. ETSI: GR MEC 017: Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in an NFV Environment (2018)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synergizing Federated Learning and In-Memory Computing;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3