Evaluation of neural networks for residential load forecasting and the impact of systematic feature identification

Author:

Vanting Nicolai Bo,Ma Zheng,Jørgensen Bo Nørregaard

Abstract

AbstractEnergy systems face challenges due to climate change, distributed energy resources, and political agenda, especially distribution system operators (DSOs) responsible for ensuring grid stability. Accurate predictions of the electricity load can help DSOs better plan and maintain their grids. The study aims to test a systematic data identification and selection process to forecast the electricity load of Danish residential areas. The five-ecosystem CSTEP framework maps relevant independent variables on the cultural, societal, technological, economic, and political dimensions. Based on the literature, a recurrent neural network (RNN), long-short-term memory network (LSTM), gated recurrent unit (GRU), and feed-forward network (FFN) are evaluated and compared. The models are trained and tested using different data inputs and forecasting horizons to assess the impact of the systematic approach and the practical flexibility of the models. The findings show that the models achieve equal performances of around 0.96 adjusted R2 score and 4–5% absolute percentage error for the 1-h predictions. Forecasting 24 h gave an adjusted R2 of around 0.91 and increased the error slightly to 6–7% absolute percentage error. The impact of the systematic identification approach depended on the type of neural network, with the FFN showing the highest increase in error when removing the supporting variables. The GRU and LSTM did not rely on the identified variables, showing minimal changes in performance with or without them. The systematic approach to data identification can help researchers better understand the data inputs and their impact on the target variable. The results indicate that a focus on curating data inputs affects the performance more than choosing a specific type of neural network architecture.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3