Boost short-term load forecasts with synthetic data from transferred latent space information

Author:

Heidrich Benedikt,Mannsperger Lisa,Turowski Marian,Phipps Kaleb,Schäfer Benjamin,Mikut Ralf,Hagenmeyer Veit

Abstract

AbstractSustainable energy systems are characterised by an increased integration of renewable energy sources, which magnifies the fluctuations in energy supply. Methods to to cope with these magnified fluctuations, such as load shifting, typically require accurate short-term load forecasts. Although numerous machine learning models have been developed to improve short-term load forecasting (STLF), these models often require large amounts of training data. Unfortunately, such data is usually not available, for example, due to new users or privacy concerns. Therefore, obtaining accurate short-term load forecasts with little data is a major challenge. The present paper thus proposes the latent space-based forecast enhancer (LSFE), a method which combines transfer learning and data augmentation to enhance STLF when training data is limited. The LSFE first trains a generative model on source data similar to the target data before using the latent space data representation of the target data to generate seed noise. Finally, we use this seed noise to generate synthetic data, which we combine with real data to enhance STLF. We evaluate the LSFE on real-world electricity data by examining the influence of its components, analysing its influence on obtained forecasts, and comparing its performance to benchmark models. We show that the Latent Space-based Forecast Enhancer is generally capable of improving the forecast accuracy and thus helps to successfully meet the challenge of limited available training data.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Reference39 articles.

1. Ardizzone L, Lüth C, Kruse J, Rother C, Köthe U (2019) Guided image generation with conditional invertible neural networks. arXiv:1907.02392

2. Alrawi O, Bayram IS, Al-Ghamdi SG, Koc M (2019) High-resolution household load profiling and evaluation of rooftop PV systems in selected houses in Qatar. Energies 12(20):3876

3. Chollet F et al. (2015) Keras . https://keras.io

4. Do H, Cetin KS (2018) Residential building energy consumption: a review of energy data availability, characteristics, and energy performance prediction methods. Curr Sustain/Renew Energy Rep 5(1):76–85

5. Dua D, Graff C (2019) UCI machine learning repository. http://archive.ics.uci.edu/ml

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3