Optimal joint operation of coupled transportation and power distribution urban networks

Author:

Sadhu Kaushik,Haghshenas Kawsar,Rouhani Mohammadhadi,Aiello Marco

Abstract

AbstractThe number of Electric Vehicles (EVs) and consequently their penetration level into urban society is increasing which has imperatively reinforced the need for a joint stochastic operational planning of Transportation Network (TN) and Power Distribution Network (PDN). This paper solves a stochastic multi-agent simulation-based model with the objective of minimizing the total cost of interdependent TN and PDN systems. Capturing the temporally dynamic inter-dependencies between the coupled networks, an equilibrium solution results in optimized system cost. In addition, the impact of large-scale EV integration into the PDN is assessed through the mutual coupling of both networks by solving the optimization problems, i.e., optimal EV routing using traffic assignment problem and optimal power flow using branch flow model. Previous works in the area of joint operation of TN and PDN networks fall short in considering the time-varying and dynamic nature of all effective parameters in the coupled TN and PDN system. In this paper, a Dynamic User Equilibrium (DUE) network model is proposed to capture the optimal traffic distribution in TN as well as optimal power flow in PDN. A modified IEEE 30 bus system is adapted to a low voltage power network to examine the EV charging impact on the power grid. Our case study demonstrates the enhanced operation of the joint networks incorporating heterogeneous EV characteristics such as battery State of Charge (SoC), charging requests as well as PDN network’s marginal prices. The results of our simulations show how solving our defined coupled optimization problem reduces the total cost of the defined case study by 36% compared to the baseline scenario. The results also show a 45% improvement on the maximum EV penetration level with only minimal voltage deviation (less than 0.3%).

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3