Gossen’s first law in the modeling for demand side management: a thorough heat pump case study with deep learning based partial time series data generation

Author:

Li Chang,Brecher Gina,Kovačević Jovana,Çakmak Hüseyin K.,Förderer Kevin,Matthes Jörg,Hagenmeyer Veit

Abstract

AbstractGossen’s First Law describes the law of diminishing marginal utility. This paper aims to further verify the proposed hypothesis that Gossen’s First Law also holds in the modeling for Demand Side Management (DSM) with a thorough heat pump case study. The proposed hypothesis states that in general the complexity-utility relationship in the field of DSM modeling could be represented by a diminishing marginal utility curve. On the other hand, in data based modeling, when utilizing a large dataset for validation, the data integrity is critical to the reliability of the results. However, the absence of partial time series data may occur during the measurement due to missing sensors or IT related issues. In this work, an extensive real-world open dataset of a ground source heat pump is utilized for the case study. In the raw data, one key variable namely the flow rate is missing. Thus, three different algorithms based on machine learning and deep learning architectures namely Random Forest (RF), Long Short-Term Memory (LSTM) and Transformer are applied to predict the flow rate by utilizing an open loop forecasting. The raw data are first pre-processed with a time interval of one hour and then used for training, validation and forecast. Furthermore, a modified persistence model as the baseline is also defined. The predicted flow rate using LSTM yields the lowest error of 7.47$$\%$$ % nMAE and 10.56$$\%$$ % nRMSE respectively. The forecast results are then utilized in the following step of modeling of a heat pump use case. With the introduced quantification method for complexity and a modified version for utility, we further verify the proposed hypothesis with a longer time horizon of 7 days.

Funder

Helmholtz Association

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3