Author:
Liu Wenda,Shi Tao,Zheng Di,Ke Guangshui,Chen Jingteng
Abstract
Abstract
Background
Osteosarcoma is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the mechanisms of osteosarcoma are still not well understood. We aimed to investigate the potential biomarker, allograft inflammatory factor-1 (AIF1), affecting the progression and prognosis of osteosarcoma.
Methods
Three microarray datasets were downloaded from GEO datasets and one was obtained from the TCGA dataset. The differentially expressed genes (DEGs) were identified. GO and KEGG functional enrichment analyses of overlapped DEGs were performed. The PPI network of overlapped DEGs was constructed by STRING and visualized with Cytoscape. Overall survival (OS) and Metastasis free survival (MFS) were analyzed from GSE21257. Finally, the effect of the most relevant core gene affecting the progression of osteosarcoma was examined in vitro.
Results
One hundred twenty six DEGs were identified, consisting of 65 upregulated and 61 downregulated genes. Only AIF1 was significantly associated with OS and MFS. It was found that AIF1 could be enriched into the NF-κB signaling pathway. GSEA and ssGSEA analyses showed that AIF1 was associated with the immune invasion of tumors. Cell experiments showed that AIF1 was underexpressed in osteosarcoma cell lines, while the malignant propriety was attenuated after overexpressing the expression of AIF1. Moreover, AIF1 also affects the expression of the NF-κB pathway.
Conclusion
In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of osteosarcoma, and provide candidate targets for diagnosis and treatment of osteosarcoma.
Publisher
Springer Science and Business Media LLC