Author:
Legnani Claudio,Torretta Enrica,Attanasio Marco,Gelfi Cecilia,Parente Franco,Ventura Alberto,Oriani Giorgio
Abstract
Abstract
Background
Local infiltration analgesia (LIA) is frequently administered to patient undergoing joint replacement surgical procedures. The aim of the present research was to verify the safety of collected shed blood to be reinfused postoperatively, by measuring levobupivacaine levels in drainage blood in patients undergoing LIA during knee replacement surgery.
Patients and Methods
24 patients who underwent total knee arthroplasty (TKA) and 12 scheduled for total hip arthroplasty (THA) who received intraoperative LIA were considered. Blood samples were collected from shed blood which was present in drainage 2 and 5 hours after surgery and serum was analysed by liquid chromatography-tandem mass spectrometry.
Results
At 2 hours postoperatively, the median levobupivacaine serum concentration in the collected shed blood was 1.2 mg/L (SD: 4.2) for TKA and 17.13 mg/L (SD: 24.4) for THA. At 5 hours, levobupivacaine concentration was 1.84 mg/L (SD: 2.2) for TKA and 17.5 mg/L (SD: 25.2) for THA. Higher values of average serum levobupivacaine concentration were reported in drains collected from patients who had undergone THA compared to TKA (p<0.001). BMI significantly influenced levels of serum drug, that resulted to be higher in patients with BMI<25 (p= 0.01).
Conclusion
Levobupivacaine from collected shed blood that would have been returned to the patient, was below toxicity level at 2 and 5 hours after LIA during total joint replacement. The average serum levobupivacaine concentration was found to be higher in drains taken from THA patients than TKA patients. Patients with lower BMI demonstrated the highest levels of levobupivacaine in shed blood and a lower blood volume needed for central nervous system toxicity. Therefore, in patients with a lower BMI undergoing THA, anaesthetic dosage should be reduced or autotransfusion should be avoided to prevent potential risks of toxicity.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Aggarwal A, Naylor JM, Adie S, Liu VK, Harris IA. Preoperative factors and patient-reported outcomes after total hip arthroplasty: multivariable prediction modeling. J Arthroplasty. 2022;37(4):714-720e4.
2. Soffin EM, Wainwright TW. Hip and knee arthroplasty. Anesthesiol Clin. 2022;40(1):73–90.
3. Wang Q, Zhao C, Hu J, Ma T, Yang J, Kang P. Efficacy of a modified cocktail for periarticular local infiltration analgesia in total knee arthroplasty: a prospective, double-blinded, randomized controlled trial. J Bone Joint Surg Am. 2023;105(5):354–62.
4. Legnani C, Oriani G, Parente F, Ventura A. Reducing transfusion requirements following total knee arthroplasty: effectiveness of a double infusion of tranexamic acid. Eur Rev Med Pharmacol Sci. 2019;23(5):2253–6.
5. Hannon CP, Fillingham YA, Mason JB, Sterling RS, Casambre FD, Verity TJ, Woznica A, Nelson N, Hamilton WG, Della Valle CJ. The efficacy and Safety of Corticosteroids in total joint arthroplasty: a direct meta-analysis. J Arthroplasty. 2022;37(10):1898-1905e7.