Author:
Huang Shengjia,Min Shaoxiong,Wang Suwei,Jin Anmin
Abstract
Abstract
Background
Oblique lateral interbody fusion (OLIF) is widely used to treat lumbar degenerative disc disease. This study aimed to evaluate the biomechanical stability of OLIF, OLIF including posterior pedicle screw and rod (PSR), and OLIF including cortical screw and rod (CSR) instrumentation through finite element analysis.
Methods
A complete L2-L5 finite element model of the lumbar spine was constructed. Surgical models of OLIF, such as stand-alone, OLIF combined with PSR, and OLIF combined with CSR were created in the L3-L4 surgical segments. Range of motion (ROM), end plate stress, and internal fixation peak stress were compared between different models under the same loading conditions.
Results
Compared to the intact model, ROM was reduced in the OLIF model under all loading conditions. The surgical models in order of increasing ROM were PSR, CSR, and stand-alone; however, the difference in ROM between BPS and CSR was less than 0.4° and was not significant under any loading conditions. The stand-alone model had the highest stress on the superior L4 vertebral body endplate under all loading conditions, whereas the end plate stress was relatively low in the BPS and CSR models. The CSR model had the highest internal fixation stress, concentrated primarily at the end of the screw.
Conclusions
OLIF alone significantly reduces ROM but does not provide sufficient stability. Addition of posterior PSR or CSR internal fixation instrumentation to OLIF surgery can significantly improve biomechanical stability of the segment undergoing surgery.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference59 articles.
1. Li JX, Phan K, Mobbs R. Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg. 2017;98:113–23.
2. Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, Multicenter Survey. Spine (Phila Pa 1976). 2017;42(1):55–62.
3. Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.
4. Kraiwattanapong C, Arnuntasupakul V, Kantawan R, Keorochana G, Lertudomphonwanit T, Sirijaturaporn P, et al. Malposition of cage in minimally invasive oblique lumbar interbody fusion. Case Rep Orthop. 2018;2018:9142074.
5. Chung NS, Lee HD, Jeon CH. Accuracy of the lateral cage placement under intraoperative C-arm fluoroscopy in oblique lateral interbody fusion. J Orthop Sci. 2018;23(6):918–22.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献