Author:
Fan Wei,Liu Jinhui,Tan Xiaoqi,Wei Daiqing,Yang Yunkang,Xiang Feifan
Abstract
Abstract
Background
Maintaining effective reduction and firm fixation in inferior pole patellar fractures is a highly challenging task. There are various treatment methods available; although tension-band wiring combined with cerclage wiring (TBWC) is the mainstream approach, its effectiveness is limited. Herein, we propose and evaluate a new technique called candy box (CB), based on separate vertical wiring (SVW), for the treatment of inferior pole patellar fractures. Specifically, we provide biomechanical evidence for its clinical application.
Methods
Five fixation models were built: SVW combined with cerclage wiring (SVWC); TBWC; modified SVW with the middle (MSVW-A) or upper (MSVW-B) 1/3 of the steel wire reserved, and CB. A finite element analysis was performed to compare the displacement and stress under 100-N, 200-N, 300-N, 400-N and 500-N force loads. Three-dimensional printing technology was utilized to create fracture models, and the average displacement of each model group was compared under a 500-N force.
Results
The results of the finite element analysis indicate that CB technology exhibits significantly lower maximum displacement, bone stress, and wire stress compared to that with other technologies under different loads. Additionally, in biomechanical experiments, the average force displacement in the CB group was significantly smaller than that with other methods under a 500-N force (P < 0.05).
Conclusions
CB technology has the potential to overcome the limitations of current techniques due to its superior biomechanical characteristics. By incorporating early functional exercise and ensuring strong internal fixation, patient prognosis could be enhanced. However, further clinical trials are needed to fully evaluate the therapeutic effects of CB technology.
Funder
the Natural Science Foundation of Sichuan Province
Shang’antong Special Fund of Sichuan Medical Association
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献