Author:
von Schulze Pellengahr Christoph,Teske Wolfram,Kapoor Saurabh,Klein Alexander,Wegener Bernd,Büttner Andreas,Lahner Matthias
Abstract
Abstract
Background
High primary stability is the key prerequisite for safe osseointegration of cementless intervertebral disc prostheses. The aim of our study was to determine the primary stability of intervertebral disc prostheses with two different anchoring concepts – keel and spike anchoring.
Methods
Ten ActivL intervertebral disc prostheses (5 x keel anchoring, 5 x spike anchoring) implanted in human cadaver lumbar spine specimens were tested in a spine movement simulator. Axial load flexion, extension, left and right bending and axial rotation motions were applied on the lumbar spine specimens through a defined three-dimensional movement program following ISO 2631 and ISO/CD 18192-1.3 standards. Tri-dimensional micromotions of the implants were measured for both anchor types and compared using Student’s T-test for significance after calculating 95 % confidence intervals.
Results
In the transverse axis, the keel anchoring concept showed statistically significant (p < 0.05) lower mean values of micromotions compared to the spike anchoring concept. The highest micromotion values for both types were observed in the longitudinal axis. In no case the threshold of 200 micrometers was exceeded.
Conclusions
Both fixation systems fulfill the required criteria of primary stability. Independent of the selected anchorage type an immediate postoperative active mobilization doesn’t compromise the stability of the prostheses.
Funder
B. Braun Medical
Deutsche Forschungsgesellschaft
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献