3D analysis of the distal ulna with regard to the design of a new ulnar head prosthesis

Author:

Furrer Pascal Raffael,Nagy Ladislav,Reissner Lisa,Schweizer Andreas

Abstract

Abstract Study design A retrospective, single center, data analysis. Objective Persistent pain and instability are common complications after distal ulnar head arthroplasty. One main reason may be the insufficient representation of the anatomical structures with the prosthesis. Some anatomical structures are neglected such as the ulnar head offset and the ulnar torsion which consequently influences the wrist biomechanics. Methods CT scans of the ulnae of forty healthy and asymptomatic patients were analyzed in a three-dimensional surface calculation program. In the best fit principle, cylinders were fitted into the medullary canal of the distal ulna and the ulnar head to determine their size. The distance between the central axes of the two cylinders was measured, which corresponds to the ulnar offset, and also their rotational orientation was measured, which corresponds to the ulnar torsion. Results The mean medullary canal diameter was 5.8 mm (±0.8), and the ulnar head diameter was 15.8 mm (±1.5). The distance between the two cylinder axes was 3.89 mm (±0.78). The orientation of this offset was at an average of 8.63° (±15.28) of supination, reaching from 23° pronation to 32° supination. Conclusion With these findings, a novel ulnar head prosthesis should have different available stem and head sizes but also have an existing but variable offset between these two elements. A preoperative three-dimensional analysis is due to the high variation of offset orientation highly recommended. These findings might help to better represent the patients natural wrist anatomy in the case of an ulnar head arthroplasty. Level of Evidence III.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3