Upregulating miR-181b promotes ferroptosis in osteoarthritic chondrocytes by inhibiting SLC7A11

Author:

Wang Dexin,Fang Yu,Lin Liang,Long Wensuo,Wang Lei,Yu Liwei,Deng Huaiming,Wang DanORCID

Abstract

Abstract Background Osteoarthritis (OA) is a common disease with a complex pathology. This study aimed to investigate the correlation between the aberrant upregulation of miR-181b and ferroptosis in chondrocytes during the progression of OA. Methods An OA cell model was constructed with erastin. Ferrostatin-1 (Fer), bioinformatics, and dual-luciferase activity reports were used to investigate the effect of miR-181b on OA. Finally, a rat model of OA was induced by monosodium iodoacetate to verify that miR-181b inhibits SLC7A11 gene expression and increases ferroptosis. Results The results showed that Fer could effectively reverse the erastin-induced inhibition of human chondrocyte viability, increase the level of collagenous proteins in human chondrocytes, and inhibit oxidative stress and ferroptosis. MiR-181b is abnormally elevated in OA cell models. Transfection of a miR-181b inhibitor could increase the expression levels of the ferroptosis-related proteins solute carrier family 7 members 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thereby inhibiting the occurrence of ferroptosis in chondrocytes. In addition, hsa-miR-181b-5p and SLC7A11 have a targeted regulatory effect. Transfection of SLC7A11 siRNA effectively abrogated the increase in chondrocyte viability induced by the miR-181 inhibitor and increased ferroptosis. Finally, miR-181b was shown to exacerbate OA disease progression by inhibiting SLC7A11 gene expression and increasing ferroptosis in a rat OA model. Conclusions Elevating miR-181b may mediate chondrocyte ferroptosis by targeting SLC7A11 in OA.

Funder

Expression of MicroRNA-181b in Chondrocytes and Its Effect on Autophagy and Apoptosis

Key Discipline of Orthopedic Surgery, Haishu District, Ningbo City

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3