Abstract
Abstract
Background
The aim of the present study was to describe and measure the occipital-cervical distance by a novel method utilizing the occiput-C4 distance (OC4D) in normal subjects, as a proposed tool to guide restoration of vertical dislocations of the occipitocervical region in patients with basilar invaginations and for performing standardized testing of occipitocervical constructs.
Methods
We analyzed neutral, flexion, and extension lateral cervical spine radiographs of 150 asymptomatic subjects (73 males and 77 females) that were judged to be normal. The mean age of the included asymptomatic subjects was 48.0 ± 8.4 years old (range 20–69 years old; 48.4 ± 10.2 years old for males and 47.6 ± 6.4 years old for females). The OC4D was defined as the shortest distance from the center of the C4 vertebral body to the McGregor’s line. Occipitocervical distances (OCDs) were measured and analyzed its correlation with OC4Ds. Two spine surgeons each performed three measurements of the OC4D and OCD from each asymptomatic subject, from which our reported average values were derived. The height, weight, and body mass index (BMI) of each subject were recorded and analyzed for their correlations with the OC4D and OCD.
Results
The OC4Ds from neutral, flexion, and extension lateral cervical spine radiographs were 69.0 ± 6.9, 68.9 ± 6.8, and 68.1 ± 6.9 mm, respectively. There was no significant difference in the OC4D values among neutral, flexion, and extension lateral cervical spine radiographs (P > 0.05). The neutral, flexion, and extension OCDs were 23.0 ± 4.8, 27.6 ± 6.0, and 13.8 ± 4.7 mm, respectively. In particular, the neutral OCD was significantly different from those in flexion and extension lateral cervical spine radiographs (P < 0.001). There was no significant correlation between OC4D and OCD in neutral, flexion, and extension (P > 0.05 for all). There were positive correlations between OC4D and height, as well as OC4D and weight, in neutral, flexion, and extension lateral cervical spine radiographs (P < 0.001 for all). Furthermore, the intra-class correlation coefficients for inter- and intra-observer reliabilities of OC4Ds in neutral, flexion, and extension lateral cervical spine radiographs were significantly higher than those for OCDs (P < 0.001).
Conclusions
The OC4D represents a novel measurement for estimating the occipital-cervical distance that is not affected by changes in neutral, flexion, and extension positions. Hence, the OC4D may serve as a valuable parameter and intra-operative tool to guide vertical restoration during occipitocervical fusion (OCF) for patients with altered occiput-cervical anatomy.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology