Patients’ experience on pain outcomes after hip arthroplasty: insights from an information tool based on registry data

Author:

Fabiano Gianluca,Cole Sophie,Barea Christophe,Cullati Stéphane,Agoritsas Thomas,Gutacker Nils,Silman Alan,Hannouche Didier,Lübbeke Anne,Pinedo-Villanueva Rafael

Abstract

Abstract Background Arthroplasty registries are rarely used to inform encounters between clinician and patient. This study is part of a larger one which aimed to develop an information tool allowing both to benefit from previous patients’ experience after total hip arthroplasty (THA). This study focuses on generating the information tool specifically for pain outcomes. Methods Data from the Geneva Arthroplasty Registry (GAR) about patients receiving a primary elective THA between 1996 and 2019 was used. Selected outcomes were identified from patient and surgeon surveys: pain walking, climbing stairs, night pain, pain interference, and pain medication. Clusters of patients with homogeneous outcomes at 1, 5, and 10 years postoperatively were generated based on selected predictors evaluated preoperatively using conditional inference trees (CITs). Results Data from 6,836 THAs were analysed and 14 CITs generated with 17 predictors found significant (p < 0.05). Baseline WOMAC pain score, SF-12 self-rated health (SRH), number of comorbidities, SF-12 mental component score, and body mass index (BMI) were the most common predictors. Outcome levels varied markedly by clusters whilst predictors changed at different time points for the same outcome. For example, 79% of patients with good to excellent SRH and less than moderate preoperative night pain reported absence of night pain at 1 year after THA; in contrast, for those with fair/poor SHR this figure was 50%. Also, clusters of patients with homogeneous levels of night pain at 1 year were generated based on SRH, Charnley, WOMAC night and pain scores, whilst those at 10 years were based on BMI alone. Conclusions The information tool generated under this study can provide prospective patients and clinicians with valuable and understandable information about the experiences of “patients like them” regarding their pain outcomes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3