Effect of different ulnar osteotomies on loading of the distal radioulnar joint: a finite element analysis

Author:

Tan Jiyang,Zhang Fei,Liu Qianyuan,Fang Xiaodong,Jiang Hong,Qian Jun,Mi Jingyi,Zhao Gang

Abstract

Abstract Background Ulnar impingement syndrome is a prevalent source of ulnar carpal pain; however, there is ongoing debate regarding the specific location of shortening, the method of osteotomy, the extent of shortening, and the resulting biomechanical alterations. Method To investigate the biomechanical changes in the distal radioulnar joint (DRUJ) resulting from different osteotomy methods, a cadaveric specimen was dissected, and the presence of a stable DRUJ structure was confirmed. Subsequently, three-dimensional data of the specimen were obtained using a CT scan, and finite element analysis was conducted after additional processing. Results The DRUJ stress did not change significantly at the metaphyseal osteotomy of 2–3 mm but increased significantly when the osteotomy length reached 5 mm. When the osteotomy was performed at the diaphysis, the DRUJ stress increased with the osteotomy length, and the increase was greater than that of metaphyseal osteotomy. Stress on the DRUJ significantly increases when the position is changed to pronation dorsi-extension. Similarly, the increase in stress in diaphyseal osteotomy was greater than that in metaphyseal osteotomy. When the model was subjected to a longitudinal load of 100 N, neither osteotomy showed a significant change in DRUJ stress at the neutral position. However, the 100 N load significantly increased stress on the DRUJ when the position was changed to pronation dorsi-extension, and the diaphyseal osteotomy significantly increased stress on the DRUJ. Conclusions For patients with distal oblique bundle, metaphyseal osteotomy result in a lower increase in intra-articular pressure in the DRUJ compared to diaphyseal osteotomy. However, it is crucial to note that regardless of the specific type of osteotomy employed, it is advisable to avoid a shortening length exceeding 5 mm.

Funder

Wuxi Ninth People's Hospital Academician Workstation Project Fund

Jiangsu Postdoctoral Research Funding Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3