Effect of chitosan and curcumin nanoparticles against skeletal muscle fibrosis at early regenerative stage of glycerol-injured rat muscles

Author:

Mahdy Mohamed A. A.ORCID,Akl Mohamed A.ORCID,Madkour Fatma A.

Abstract

Abstract Introduction Chitosan and curcumin are natural products that have a wide range of beneficial effects including wound healing. However, their high molecular weight and poor water solubility limit their applications. Aims Therefore, the current study aims to evaluate the effects of chitosan (Cs) and curcumin (Cn) nanoparticles (NPs) on fibrosis and regeneration of glycerol-injured muscle. Methods Muscle injury was induced by intramuscular injection of glycerol into the tibialis anterior muscle of rats. Cs-NPs and Cn-NPs were administered at different doses intraperitoneally after injury. Injured muscles were collected at day 7 after injury, and muscle fibrosis and regeneration were assessed. Results The present results revealed that Cs-NPs and Cn-NPs treatment significantly decreased fibrosis index and increased the average myotube diameter with shifting of the distribution of myotube diameters towards larger diameters in a dose-dependent manner. Immunohistochemical analysis revealed that Cs-NPs and Cn-NPs treatment significantly decreased the number of CD-68+ cells and Col-1+ area. Results showed that Cn-NPs had a higher protective effect, in the form of attenuating muscle fibrosis and inflammation, and enhancing muscle regeneration, than that of Cs-NPs. Conclusions To our knowledge, this is the first study to document the effects of Cs-NPs in injured muscles. The results of study might be a novel approach to attenuate muscle fibrosis in humans using curcumin and chitosan nanoparticles.

Funder

South Valley University

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Reference58 articles.

1. Serrano AL, Muñoz-Cánoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res. 2010;316(18):3050–8.

2. Wang Z, Tang Z. Composition and function of extracellular matrix in development of skeletal muscle. In: Travascio F, editor. Composition and function of the extracellular matrix in the human body. Rijeka: InTech; 2016. p. 25–43.

3. Jarvinen TA, Jozsa L, Kannus P, Jarvinen TL, Jarvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002;23(3):245–54.

4. Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int. 2017;41(7):706–15.

5. Murphy S, Ohlendieck K. The extracellular matrix complexome from skeletal muscle. In: Travascio F, editor. Composition and Function of the Extracellular Matrix in the Human Body; 2016. p. 69–92.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3