Author:
Chung Tzu-Tsao,Chu Chen-Lun,Hueng Dueng-Yuan,Lin Shang-Chih
Abstract
Abstract
Background
Many studies have been conducted to compare traditional trajectory (TT) and cortical bone trajectory (CBT) screws; however, how screw parameters affect the biomechanical properties of TT and CBT screws, and so their efficacy remains to be investigated.
Methods
A finite element model was used to simulate screws with different trajectories, diameters, and lengths. Responses for implant and tissues at the adjacent and fixed segments were used as the comparison indices. The contact lengths and spanning areas of the inserted screws were defined and compared across the varieties.
Results
The trajectory and diameter had a greater impact on the responses from the implant and tissues than the length. The CBT has shorter length than the TT; however, the contact length and supporting area of the CBT within the cortical bone were 19.6%. and 14.5% higher than those of the TT, respectively. Overall, the TT and CBT were equally effective at stabilizing the instrumented segment, except for bending and rotation. The CBT experienced less adjacent segment compensations than the TT. With the same diameter and length, the TT was considerably less stressed than the CBT, especially for flexion and extension.
Conclusions
The CBT may provide less stress at adjacent segments compared with the TT. The CBT may provide more stiffer in osteoporotic segments than the TT due to greater contact with cortical bone and a wider supporting base between the paired screws. However, both entry point and insertion trajectory of the CBT should be carefully executed to avoid vertebral breach and ensure a stable cone-screw purchase.
Funder
Tri-Service General Hospital, National Defense Medical Center
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology