Author:
Hakiminejad Alireza,Nourani Amir,Ghias Narges,Mahmoudi Alireza,Same Kaveh,Kamrani Reza Shahriar,Nabian Mohammad Hossein
Abstract
AbstractDistal humerus fractures commonly occur in adults with low bone mineral density causing major technical challenges for orthopedic surgeons. Persian fixation method was introduced as a novel technique to stabilize small fragments in comminuted distal humerus fractures using a set of K-wires and a reconstruction plate. The present study aims to measure this technique's stiffness and stability of this technique and analyze the effect of influential parameters with numerical simulation and biomechanical testing on a cadaveric specimen. Validation of the finite element (FE) model was conducted based on results of experiments. The results indicated that Delta configuration mainly led to a higher stiffness in the case of axial loading and anterior bending compared to L configuration. Analyzing the influential factors of this technique suggests that changes in diameter and number of K-wires have a similarly significant effect on the construct stiffness while the height of plate had a slight influence. Also, the diameter of wires was the most effective parameter for implant failure, particularly in the 3-pin construct, which caused a reduction in failure risk by about 60%. The results revealed that the Persian fixation method would achieve suitable stability compared to the dual-plating technique.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献