A mysterious risk factor for bone cement leakage into the spinal canal through the Batson vein during percutaneous kyphoplasty: a case control study

Author:

Zhang Shuai,Wang Gao Ju,Wang Qing,Yang Jin,Xu Shuang,Yang Chao Hua

Abstract

Abstract Background Percutaneous kyphoplasty (PKP) can effectively treat osteoporotic vertebral compression fractures (OVCFs). Although satisfactory clinical outcomes can be achieved, bone cement leakage remains a primary complication of PKP. Previous studies have found many high risk factors for bone cement leakage into the spinal canal; however, less attention to the posterior wall morphologies of different vertebral bodies may be one reason for the leakage. Here, we investigated the effect of posterior vertebral wall morphology in OVCF patients on bone cement leakage into the spinal canal during PKP. Methods Ninety-eight OVCF patients with plain computed tomography (CT) scans and three-dimensional (3D) reconstruction images from T6 to L5 were enrolled. 3D-CT and multiplanar reconstructions (MPR) were used to measure the concave posterior vertebral wall depth (PVWCD) and the corresponding midsagittal diameter of the nonfractured vertebral body (VBSD), and the PVWCD/VBSD ratio was calculated. All subjects were divided into the thoracic or lumbar groups based on the location of the measured vertebrae to observe the value and differences in the PVWCD between both groups. The differences in PVWCD and PVWCD/VBSD between the thoracic and lumbar groups were compared. Three hundred fifty-seven patients (548 vertebrae) who underwent PKP within the same period were also divided into the thoracic and lumbar groups. The maximal sagittal diameter (BCSD), the area of the bone cement intrusion into the spinal canal (BCA), and the spinal canal encroachment rate (BCA/SCA × 100%) were measured to investigate the effect of the thoracic and lumbar posterior vertebral wall morphologies on bone cement leakage into the spinal canal through the Batson vein during PKP. Results The PVWCDs gradually deepened from T6 to T12 (mean, 4.6 mm); however, the values gradually became shallower from L1 to L5 (mean, 0.6 mm). The PVWCD/VBSD ratio was approximately 16% from T6 to T12 and significantly less at 3% from L1 to L5 (P < 0.05). The rate of bone cement leakage into the spinal canal through the Batson vein was 10.1% in the thoracic group and 3.7% in the lumbar group during PKP. In the thoracic group, the BCSD was 3.1 ± 0.5 mm, the BCA was 30.2 ± 3.8 mm2, and the BCA/SCA ratio was 17.2 ± 2.0%. In the lumbar group, the BCSD was 1.4 ± 0.3 mm, the BCA was 14.8 ± 2.2 mm2, and the BCA/SCA ratio was 7.4 ± 1.0%. The BCSD, BCA and BCA/SCA ratio were significantly higher in the thoracic group than in the lumbar group (P < 0.05). Conclusions The PVWCD in the middle and lower thoracic vertebrae can help reduce bone cement leakage into the spinal canal by enabling avoiding bone cement distribution over the posterior 1/6 of the vertebral body during PKP. The effect of the difference between the thoracic and lumbar posterior vertebral wall morphology on bone cement leakage into the spinal canal through the Batson vein in OVCF patients during PKP is one reason that the rate of bone cement leakage into the thoracic spinal canal is significantly higher than that into the lumbar spinal canal.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3