Automatic segmentation model of intercondylar fossa based on deep learning: a novel and effective assessment method for the notch volume

Author:

Li Mifang,Bai Hanhua,Zhang Feiyuan,Zhou Yujia,Lin Qiuyu,Zhou Quan,Feng Qianjin,Zhang LingyanORCID

Abstract

Abstract Background Notch volume is associated with anterior cruciate ligament (ACL) injury. Manual tracking of intercondylar notch on MR images is time-consuming and laborious. Deep learning has become a powerful tool for processing medical images. This study aims to develop an MRI segmentation model of intercondylar fossa based on deep learning to automatically measure notch volume, and explore its correlation with ACL injury. Methods The MRI data of 363 subjects (311 males and 52 females) with ACL injuries incurred during non-contact sports and 232 subjects (147 males and 85 females) with intact ACL were retrospectively analyzed. Each layer of intercondylar fossa was manually traced by radiologists on axial MR images. Notch volume was then calculated. We constructed an automatic segmentation system based on the architecture of Res-UNet for intercondylar fossa and used dice similarity coefficient (DSC) to compare the performance of segmentation systems by different networks. Unpaired t-test was performed to determine differences in notch volume between ACL-injured and intact groups, and between males and females. Results The DSCs of intercondylar fossa based on different networks were all more than 0.90, and Res-UNet showed the best performance. The notch volume was significantly lower in the ACL-injured group than in the control group (6.12 ± 1.34 cm3 vs. 6.95 ± 1.75 cm3, P < 0.001). Females had lower notch volume than males (5.41 ± 1.30 cm3 vs. 6.76 ± 1.51 cm3, P < 0.001). Males and females who had ACL injuries had smaller notch than those with intact ACL (p < 0.001 and p < 0.005). Men had larger notches than women, regardless of the ACL injuries (p < 0.001). Conclusion Using a deep neural network to segment intercondylar fossa automatically provides a technical support for the clinical prediction and prevention of ACL injury and re-injury after surgery.

Funder

National Natural Science Foundation of China

Bureau of Science and Technology Innovation of Longgang District

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3