Can an insole for obese individuals maintain the arch of the foot against repeated hyper loading?

Author:

Saito YukiORCID,Chikenji Takako S.,Takata Yuichi,Kamiya Tomoaki,Uchiyama Eiichi

Abstract

Abstract Background Insoles are often applied as preventive therapy of flatfoot deformity, but the therapeutic effects on obese individuals are still controversial. We aimed to investigate the effect of insole use on time-dependent changes in the foot arch during a repeated-loading simulation designed to represent 20,000 contiguous steps in individuals with a BMI value in the range of 30–40 kg/m2. Methods Eighteen cadaveric feet were randomly divided into the following three groups: normal, obese, and insole. Ten thousand cyclic loadings of 500 N (normal group) or 1000 N (obese and insole groups) were applied to the feet. We measured time-dependent change in arch height and calculated the bony arch index (BAI), arch flexibility, and energy absorption. Results The normal group maintained more than 0.21 BAI, which is the diagnostic criterion for a normal arch, throughout the 10,000 cycles; however, BAI was less than 0.21 at 1000 cycles in the obese group (mean, 0.203; 95% confidence interval [CI] 0.196–0.209) and at 6000 cycles in the insole group (mean, 0.200; 95% CI, 0.191–0.209). Although there was a significant time-dependent decrease in flexibility and energy absorption in both the obese and insole groups (P < 0.001), the difference between 1 and 10,000 cycles were significantly smaller in the insole group than in the obese group (P = 0.024). Conclusions Use of insoles for obese individuals may help to slow time-dependent foot structural changes. However, the effect was not enough to maintain the foot structure against repeated hyper loadings.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3