Prediction of osteoporosis using radiomics analysis derived from single source dual energy CT

Author:

Wang Jinling,Zhou Shuwei,Chen Suping,He Yewen,Gao Hui,Yan Luyou,Hu Xiaoli,Li Ping,Shen Hongrong,Luo Muqing,You Tian,Li Jianyu,Zhong Zeya,Zhang Kun

Abstract

Abstract Background With the aging population of society, the incidence rate of osteoporosis is increasing year by year. Early diagnosis of osteoporosis plays a significant role in the progress of disease prevention. As newly developed technology, computed tomography (CT) radiomics could discover radiomic features difficult to recognize visually, providing convenient, comprehensive and accurate osteoporosis diagnosis. This study aimed to develop and validate a clinical-radiomics model based on the monochromatic imaging of single source dual-energy CT for osteoporosis prediction. Methods One hundred sixty-four participants who underwent both single source dual-energy CT and quantitative computed tomography (QCT) lumbar-spine examination were enrolled in a study cohort including training datasets (n = 114 [30 osteoporosis and 84 non-osteoporosis]) and validation datasets (n = 50 [12 osteoporosis and 38 non-osteoporosis]). One hundred seven radiomics features were extracted from 70-keV monochromatic CT images. With QCT as the reference standard, a radiomics signature was built by using least absolute shrinkage and selection operator (LASSO) regression on the basis of reproducible features. A clinical-radiomics model was constructed by incorporating the radiomics signature and a significant clinical predictor (age) using multivariate logistic regression analysis. Model performance was assessed by its calibration, discrimination and clinical usefulness. Results The radiomics signature comprised 14 selected features and showed good calibration and discrimination in both training and validation cohorts. The clinical-radiomics model, which incorporated the radiomics signature and a significant clinical predictor (age), also showed good discrimination, with an area under the receiver operating characteristic curve (AUC) of 0.938 (95% confidence interval, 0.903–0.952) in the training cohort and an AUC of 0.988 (95% confidence interval, 0.967–0.998) in the validation cohort, and good calibration. The clinical-radiomics model stratified participants into groups with osteoporosis and non-osteoporosis with an accuracy of 94.0% in the validation cohort. Decision curve analysis (DCA) demonstrated that the radiomics signature and the clinical-radiomics model were clinically useful. Conclusions The clinical-radiomics model incorporating the radiomics signature and a clinical parameter had a good ability to predict osteoporosis based on dual-energy CT monoenergetic imaging.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Discipline Construction Project of Hunan University of Chinese Medicine

Hunan Province “Domestic First-class Cultivation Discipline” Open Fund Project of Integrated Traditional Chinese and Western Medicine

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3