Author:
Xu Kuishuai,Zhang Liang,Wang Tianrui,Yu Tengbo,Zhao Xia,Zhang Yingze
Abstract
Abstract
Objective
Type 2 diabetes mellitus (T2DM) is one of the high risk factors for sarcopenia. However, the pathogenesis of diabetic sarcopenia has not been fully elucidated. This study obtained transcriptome profiles of gastrocnemius muscle in normal and T2DM rats based on high-throughput sequencing technology, which may provide new ideas for exploring the pathogenesis of diabetic sarcopenia.
Methods
Twelve adult male Sprague-Dawley rats were randomly divided into Control group and T2DM group, and gastrocnemius muscle tissue was retained for transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) 6 months later. Screening differentially expressed genes (DEGs), Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Gnomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. Six DEGs related to apoptosis were selected for qTR-PCR verification.
Results
Transcriptomic analysis showed that there were 1016 DEGs between the gastrocnemius muscle of T2DM and normal rats, among which 665 DEGs were up-regulated and 351 DEGs were down-regulated. GO analysis showed that the extracellular matrix organization was the most enriched in biological processes, with 26 DEGs. The extracellular matrix with 35 DEGs was the most abundant cellular component. The extracellular matrix structural constituent, with 26 DEGs, was the most enriched in molecular functions. The highest number of DEGs enriched in biological processes, cellular components and molecular functions were positive regulation of transcription by RNA polymerase II, nucleus and metal ion binding, respectively. There were 78, 230 and 89 DEGs respectively. KEGG pathway enrichment analysis showed that ECM-receptor interaction, PI3K-Akt signaling pathway and TGF-β signaling pathway(p < 0.001) had higher enrichment degree and number of DEGs. qRT-PCR results showed that the fold change of Map3k14, Atf4, Pik3r1, Il3ra, Gadd45b and Bid were 1.95, 3.25, 2.97, 2.38, 0.43 and 3.6, respectively. The fold change of transcriptome sequencing were 3.45, 2.21, 2.59, 5.39, 0.49 and 2.78, respectively. The transcriptional trends obtained by qRT-PCR were consistent with those obtained by transcriptome sequencing.
Conclusions
Transcriptomic analysis was used to obtain the “gene profiles” of gastrocnemius muscle of T2DM and normal rats. qRT-PCR verification showed that the genes related to apoptosis were differentially expressed. These DEGs and enrichment pathways may provide new ideas for exploring the pathogenesis of diabetic sarcopenia.
Publisher
Springer Science and Business Media LLC