Author:
Li Weifeng,Wang Shengjie,Tang Shiyu,Dong Zhenyue,Wang Fei
Abstract
Abstract
Background
The relationship between breech presentation and trochlear dysplasia has been confirmed. However, the pathological process of breech-related trochlear dysplasia remains unclear. This study aimed to establish an animal model to simulate breech presentation and to analyze the pathological process of the femoral trochlea.
Materials and Methods
One hundred and twenty neonatal rats were randomly assigned into a control group and two experimental groups that were swaddled (using surgical tape) to keep the hip flexed and knees extended to simulate human breech presentation for the 5 days (short Swaddling) and the 10 days (prolonged Swaddling) of life. Gross and cross-sectional observation, histological staining measurement in two experimental time points (5 and 10 days after birth) were conducted to evaluate the morphological changes of the femoral trochlea.
Results
The incidence of trochlear dysplasia increased with the Swaddling time. Rats in the prolonged Swaddling group had the high prevalence of trochlea dysplasia (52 of 60), followed by short Swaddling group (42 of 60). Gross and cross-sectional observation showed a shallower trochlea groove in two experimental groups. Histologicalstaining measurement indicated that the trochlear sulcus angle and trochlear sulcus depth were significantly different between the experimental group and the control group since day 5 and day 10.
Conclusion
In this model, breech presentation had an adverse effect on neonatal knees and could induce trochlear dysplasia. In addition, this study also showed that the more time in breech presentation, the more incidence of trochlear dysplasia.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference33 articles.
1. Tscholl PM, Wanivenhaus F, Fucentese SF. Conventional radiographs and magnetic resonance imaging for the analysis of trochlear dysplasia: the inflfluence of selected levels on magnetic resonance imaging. Am J Sports Med. 2017;45:1059–65.
2. Weber AE, Nathani A, Dines JS, et al. An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Joint Surg Am. 2016;98:417–27.
3. Colvin AC, West RV. Patellar instability. J Bone Joint Surg Am. 2008;90(12):2751–62.
4. Clark D, Metcalfe A, Wogan C, Mandalia V, Eldridge J. Adolescent patellar instability: current concepts review. Bone Joint J. 2017;99-b(2):159–70.
5. Mittag U, Kriechbaumer A, Bartsch M, Rittweger J. Form follows function: a computational simulation exercise on bone shape forming and conservation. J Musculoskelet Neuronal Interact. 2015;15(2):215–26.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献